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1. 

The important problem of computing the response spectrum of a randomly excited
non-linear oscillator has been approached by various methods including: statistical
linearization [1], closure schemes [2] and the Fokker–Planck–Kolmogorov
equation [3]. The comparatively recent approaches in references [4] and [5] also
show considerable merit. One approach which has been pursued sporadically is
based on the Volterra series [2, 6]. However, the results produced have been limited
by the fact that a low-order truncation of the series was used. The object of the
current paper is to show that interesting results become available if slightly
higher-order calculations are pursued. The calculations presented here are
arguably routine, but the results are of value.

It is well-known that many non-linear systems or input–output processes
x(t):y(t) can be realized as a mapping,

y(t)= y1(t)+ y2(t)+ y3(t)+ · · ·+ yn (t)+ · · · , (1)

where

yn (t)=g
+a

−a

· · · g
+a

−a

dt1 · · · dtnhn (t1, . . . , tn )x(t− t1) · · · x(t− tn ). (2)

This is the Volterra series and the functions hn are the Volterra kernels. The dual
frequency–domain representation is based on the higher-order FRFs (HFRFs) or
Volterra kernel transforms, Hn (v1, . . . , vn ), n=1, . . . , a, which are defined as
the multi-dimensional Fourier transforms of the kernels.

The definition of the FRF of a linear system based on the input/output
cross-spectrum, Syx (v), and input autospectrum, Sxx (v), is also well-known,

H(v)=H1(v)=Syx (v)/Sxx (v). (3)

The composite FRF Lr (v), of a non-linear system under random excitation, is
defined similarly,

Lr (v)=Syx (v)/Sxx (v). (4)
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Using the Volterra series representation in (1) results in the expression

Lr (v)=
Sy1x (v)+Sy2x (v)+ · · ·+Synx (v)+ · · ·

Sxx (v)
. (5)

Lr (v) will be approximated here by obtaining expressions for the various
cross-spectra between the input and the individual output components. For
example, it is shown in references [7] and [8] that

Sy3x (v)=
3Sxx (v)

2p g
+a

−a

dv1H3(v1, −v1, v)Sxx (v1). (6)

The general term is obtained straightforwardly as

Sy2n−1x (v)=
(2n)!Sxx (v)
n!2n(2p)n−1 g

+a

−a

· · · g
+a

−a

dv1 · · · dvn−1

× H2n−1(v1, −v1, . . . , vn−1, −vn−1, v)Sxx (v1) · · · Sxx (vn−1). (7)

Now, given that the input autospectrum is constant over all frequencies for a
Gaussian white noise input (i.e., Sxx (v)=P), the composite FRF for random
excitation follows. Substituting equation (7) into equation (5) gives

Lr (v)= s
n=a

n=1

(2n)!Pn−1

n!2n(2p)n−1 g
+a

−a

· · · g
+a

−a

dv1 · · · dvn−1

× H2n−1(v1, −v1, . . . , vn−1, −vn−1, v). (8)

2.     D 

The system studied here is the ubiquitous Duffing oscillator with equation of
motion

mÿ(t)+ cẏ(t)+ k1y(t)+ k3y(t)3 = x(t), (9)

where m represents mass, c viscous damping, k1 linear spring stiffness and k3 cubic
spring stiffness. By using the theory developed in the last section, an expression
for Lr (v) up to O(P2) will be calculated for this system. From equation (8) the
first three terms are given by

Sy1x (v)
Sxx (v)

=H1(v),
Sy3x (v)
Sxx (x)

=
3P
2p g

+a

−a

dv1H3(v1, −v1, v),

Sy5x (v)
Sxx (v)

=
15P2

(2p)2 g
+a

−a g
+a

−a

dv1 dv2H5(v1, −v1, v2, −v2, v). (10)

The first term of equation (10) needs no further work but the others require
expressions for the HFRF terms as functions of the H1s and k3. This may be
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achieved by harmonic probing of the system equation of motion [9]. The results
are

H3(v1, −v1, v)=−k3H1(v)2=H1(v1)=2 (11)

and

H5(v1, −v1, v2, −v2, v)= (3k2
3 /10)H1(v)2=H1(v1)=2=H1(v2)=2{2H1(v)+H1(v1)

+ H1(−v1)+H1(v2)+H1(−v2)

+ H1(v1 +v2 +v)+H1(v1 −v2 +v)

+ H1(−v1 +v2 +v)+H1(−v1 −v2 +v)}. (12)

Substituting equation (11) into the Sy3x (v)/Sxx (v) term of equation (10) gives

Sy3x (v)
Sxx (v)

=−
3Pk3H1(v)2

2p g
+a

−a

dv1=H1(v1)=2. (13)

The integral may be found in standard tables of integrals used for the calculation
of mean square response, e.g. reference [10]. The result is

Sy3x (v)/Sxx (v)=−3Pk3H1(v)2/2ck1 (14)

for this system. The third-order component of the response does not change the
position of the poles of Lr (v) from those of the linear FRF. It actually converts
them to double poles. This is as far as previous calculations have gone. The effect
of the next non-zero term will now be analyzed.

Substituting equation (12) into the Sy5x (v)/Sxx (v) term of equation (10) gives,
after a little effort, the integrals

Sy5x (v)
Sxx (v)

=
9P2k2

3H1(v)3

4p2 g
+a

−a g
+a

−a

dv1 dv2=H1(v1)=2=H1(v2)=2

+
9P2k2

3H1(v)2

2p2 6Re g
+a

−a g
+a

−a

dv1 dv2H1(v1)=H1(v1)=2=H1(v2)=2

+ g
+a

−a g
+a

−a

dv1 dv2H1(v1 +v2 +v)=H1(v1)=2=H1(v2)=27. (15)

The first integral may be evaluated straightforwardly as

g
+a

−a g
+a

−a

dv1 dv2=H1(v1)=2=H1(v2)=2 =6g
+a

−a

dv1=H1(v1)=27
2

=
p2

c2k2
1
, (16)

on making use of the tabulated results in reference [10].
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The second integral can also be factorized,

Re g
+a

−a

dv1H1(v1)=H1(v1)=2 g
+a

−a

dv2=H1(v2)=2, (17)

and the second integral is as before. Contour integration can be used to evaluate
the first part and gives

Re g
+a

−a g
+a

−a

dv1 dv2H1(v1)=H1(v1)=2=H1(v2)=2 =
p2

2c2k3
1
. (18)

The third and final integral of the Sy5x (v)/Sxx (v) expression is a little more
complicated as the integrand does not factorize. However, contour integration
again suffices to give

I(v)

=
−p2(v2 −3v2

d −10izvnv−27z2v2
n )

mc2k2
1 (v−vd −3izvn )(v+vd −3izvn )(v−3vd −3izvn )(v+3vd −3izvn )

,

(19)

and the overall expression for Sy5x(v)/Sxx (v) is

Sy5x (v)
Sxx (v)

=
9P2k2

3H1(v)3

4c2k2
1

+
9P2k2

3H1(v)2

4c2k3
1

+
9P2k2

3H1(v)2

2p2 I(v) (20)

for the classical Duffing oscillator. The above equation shows that the first two
terms do not affect the position of the poles of the linear system, but convert them
to triple poles. The term of greatest interest is the final one which has introduced
four new poles at

vd +3izvn ; −vd +3izvn ; 3vd +3izvn ; −3vd +3izvn . (21)

The pole structure to this order is shown in Figure 1. The poles at 23vd +3izvn

explain the secondary observed peak at three times the resonance frequency in the
output spectra of non-linear oscillators [3].

Combining equations (14), (18) and (19) into equation (5) yields an expression
for the composite FRF Lr (v) up to O(P2). The magnitude of the composite FRF

Figure 1. Pole structure of the first three terms of Lr (v) for the classical Duffing oscillator system.
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Figure 2. Composite FRF Lr (v) for the Duffing oscillator to order P2. FRF distortion
(k2 =0, k3 =5×109). P values: ——, 0·0 (linear system); ---, 0·01; – – –, 0·02.

is plotted in Figure 2 for values of P equal to 0 (linear system), 0·01 and 0·02. The
Duffing oscillator parameters are m=1, c=20, k1 =104 and k3 =5×109.

In order to determine whether or not the inclusion of further terms in the Lr (v)
approximation results in further poles arising at new locations, the fourth non-zero
term (i.e., Sy7x (v)/Sxx (v)) for this system was considered. The expression consists
of 280 integrals when the problem is expressed in H1 terms. However repeating
the procedure of combining terms which yield identical integrals results in 13
integrals. After evaluating the integrals, again by contour integration, it was found
that no new poles arose.

Due to the rapidly increasing level of difficulty associated with the addition of
further terms to Lr (v) it was not possible to completely examine the Sy9x (v)/Sxx (v)
term. However, one integral was considered which would be included in the overall
expression: i.e.,

27P4k4
3H1(v)2

128p4 g
+a

−a g
+a

−a g
+a

−a g
+a

−a

dv1 dv2 dv3 dv4H1(v+v1 +v2 +v3 +v4)

×H1(v+v1 +v2)H1(−v1 −v2 −v3)=H1(v1)=2=H1(v2)=2=H1(v3)=2=H1(v4)=2.
(22)
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This integral was evaluated as before and was found to have triple poles at the
locations given in equation (21) and simple poles at the locations

vd +5izvn , −vd +5izvn , 3vd +5izvn , −3vd +5izvn ,

5vd +5izvn , −5vd +5izvn ,

vd +7izvn , −vd +7izvn , 3vd +7izvn , −3vd +7izvn ,

5vd +7izvn , −5vd +7izvn , 7vd +7izvn , −7vd +7izvn . (23)

Although it is possible that these contributions cancel when combined with other
integrals from Sy9x (v)/Sxx (v), it can be conjectured that including all further terms
would result in FRF poles for this system being witnessed at all locations
avd + bizvn where aE b are both odd integers.

If a quadratic stiffness term is added to equation (9),

mÿ(t)+ cẏ(t)+ k1y(t)+ k2y(t)2 + k3y(t)3 = x(t), (24)

the calculation up to O(P2) gives poles at

2vd +2izvn , −2vd +2izvn , 2izvn ,

vd +3izvn , −vd +3izvn , 3vd +3izvn , −3vd +3izvn . (25)

Note that these poles arise not only due to the k3 term but also in integrals which
depend only upon k2. This suggests that even non-linear terms result in poles in
the composite FRF at all locations avd + bizvn where aE b are both odd integers
or both even. It might be expected that the inclusion of all terms in the L(v)
expansion will result in an infinite array of poles, positioned at avd + bizvn where
aE b are both odd integers or both even.

An interesting feature of this analysis is that the mutiplicity of the poles increases
with order P. The implication is that the poles will become isolated essential
singularities in the limit.

It is significant that all the poles are located in the upper half of the v-plane.
It is known (e.g. see reference [11]), that applying the Hilbert transform test to a
system with all its poles in the upper half of the complex plane results in the system
being labelled linear. If this behaviour continues for higher terms this then shows
agreement with apparent linearization of FRFs obtained under random excitation.

3.    V 

The convergence of the Volterra series is examined here. Results will be obtained
for the classical Duffing oscillator by using the criteria developed by Barrett [12].
The first step is to convert the equation of motion (9) to the normalized form,

ÿ'+2zẏ'+ y'+ oy'3 = x'(t'). (26)

This is accomplished by the transformation,

y'=v2
n , x'= x/m, t'=vnt, (27)
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so that

o= k3/mv6
n (28)

and z has the usual definition. Once in this co-ordinate system, convergence of the
Volterra series is assured as long as

>y'>Q y'b =1/z3oH, (29)

where

H=coth (pz/z1− z2). (30)

The norm >y'> on an interval of time is simply the maximum value of y' over that
interval. Upon using the values of section 4, m=1, c=20 and k1 =104, the value
of y'b obtained is 4·514. This translates into a physical bound yb =4·514×10−4.

Now, the mean-square response syl , of the underlying linear system (k3 =0) is
given by the standard formula

s2
yl = pP/ck1, (31)

and in this case, syl =3·96332×10−4 if P=0·01 and syl =5·60499×10−4 if
P=0·02. However, these results will be conservative if a non-zero k3 is assumed.
In fact for the non-linear system [1],

s2
ynl

= s2
yl
−3as2

yl
, (32)

to first order in a= k3/k1. If this results is assumed valid (a is by no means small),
the mean-square response of the cubic system can be found. It is
synl =3·465×10−4 when P=0·01 and synl =4·075×10−4 when P=0·02. In the
first case, the Barrett bound is 1·3 standard deviations and in the second case it
is 1·11 standard deviations. Thus, by using standard tables for Gaussian statistics
[13], it is found that the Volterra series is valid with 80·6% confidence if P=0·01
and with 73·3% confidence if P=0·02. As the Barrett bound is known to be
conservative [14], these results were considered to lend support to the assumption
of validity for the Volterra series.

4. H 

The Hilbert transform has attracted attention recently as a means of diagnosing
structural non-linearity on the basis of measured Frequency Response Function
data [15]. It is essentially a mapping on the FRF G(v),

H[G(v)]= G̃(v)=−
1
ip g

a

−a

dV
G(V)
V−v

, (33)

where the integral is to be understood as a principal value. This mapping reduces
to the identity on those functions corresponding to linear systems. For non-linear
systems, the Hilbert transform results in a distorted version G̃, of the original FRF,
with the form of the distortion yielding some indication of the type of
non-linearity. Unfortunately, no analytical expressions are available for the
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Hilbert transform of even the simplest non-linear system FRF, although an
attempt at approximating G̃(v) for the Duffing oscillator was given in reference
[16]. The approximation, based on the Volterra series, reproduced well the
qualitative features of G̃(v).

The origin of the distortion is well-known [11]; suppose G(v) is decomposed as

G(v)=G+(v)+G−(v), (34)

where G+(v) (resp. G−(v)) has poles only in the upper (resp. lower) half of the
complex v-plane. It can be shown that

H[G2(v)]=2G2(v). (35)

It is clear from this that the distortion suffered in passing from the FRF to the
Hilbert transform will be given by the simple relation,

DG(v)=H[G(v)]−G(v)= −2G−(v). (36)

In the case of a non-linear system excited by a stepped-sinusoid X sin(vt), the
resulting FRF Ls (v) can be obtained by a straightforward calculation [17],

Ls (v)=H1(v)+ 3
4k3X2H1(v)3H*1 (v)

+ 3
16k

2
3X4[3H1(v)4H*1 (v)3 +6H1(v)5H*1 (v)2

+ H1(v)4H*1 (v)2H1(3v)]+O(X6). (37)

The critical fact is that the FRF contains terms of the form H*1 . This means
that it will always have poles in the lower half-plane. As a result, according to
equation (36), the FRF will distort under the action of the Hilbert transform.

In contrast to the situation for a stepped-sine FRF, the random excitation FRF
appears to have all poles in the upper half-plane. The Hilbert transform result (36)
is independent of the multiplicity of the poles, so the FRF Lr (v) will not distort
under the action of the Hilbert transform. These remarks are completely consistent
with experimental findings.

Note that a generic non-linearity will almost always have a second or third order
term and the FRF will therefore almost always have the complex conjugate poles
described above. It follows that general non-linear system FRFs will distort under
the Hilbert transform if stepped-sine excitation is used.

5. 

An expansion is obtained for the FRF of a Duffing oscillator subjected to white
Gaussian excitation. The expansion reproduces the observed variations in the FRF
when subjected to varying input powers. The expansion also indicates why the
Hilbert transform test fails to signal non-linearity on FRFs from random testing,
a question which has stood since the introduction of the test. It is also possible
on the basis of the results above, to make a tentative conjecture on the pole
structure of the Duffing oscillator and in fact of non-linear systems in general. It
remains to be seen if there are any discernible consequences for the stability
analysis of non-linear systems for example.
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